Reply to comment `Exact solution of an $\mathbf{N}$-body problem in one dimension'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 296459
(http://iopscience.iop.org/0305-4470/29/19/029)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:01

Please note that terms and conditions apply.

## COMMENT

# Reply to comment 'Exact solution of an $N$-body problem in one dimension' 

Avinash Khare $\dagger$<br>Institute of Physics, Sachivalaya Marg, Bhubaneswar-751 005, India

Received 3 May 1996


#### Abstract

It is pointed out that apart from the classic Calogero problem, the $N$-body potential discussed in reference [1] of the preceding comment is the only one for which the $N$-body problem as given by equation (1) of the comment is analytically solvable for all partial waves. In that sense the $N$-body potential is indeed unique.


In the comment [1], Calogero has made two points.
(i) The bound-state spectrum obtained in [2] for the $N$-body problem experiencing the 'Coulomb' potential $v(r)=-\alpha^{\prime} / r$ is a special case of the more general result valid for any 'radial' potential $v(r)$.
(ii) The claim $p_{j}^{\prime}=p_{N+1-j}$ made in [2] concerning the scattering is incorrect where $p_{j}, p_{j}^{\prime}\left(j, j^{\prime}=1,2, \ldots, N\right)$ are the initial and final momenta, respectively.

Calogero is right about his point (ii) and it must be admitted that in [2] one had overlooked the fact that the phase shift $\eta_{p}$ also depends on the quantum number $k$ and hence cannot be taken out of the summation sign $\ddagger$.

Calogero, however, has missed an important fact in his first point. Even though it is true that the energy spectra of the $N$-body Hamiltonian as given by equations (1a) and $(1 b)$ of [1] coincides (except for multiplicities) with the eigenvalues $E$ of equation ( $6 a$ ) (or equation (6b) of [1]), it is worth pointing out that of all possible $v(r)$ the only two problems for which the entire spectrum can be written down analytically for all partial waves are when $v(r)=a r^{2}$ or $v(r)=-\alpha^{\prime} / r$. The first case was discussed by Calogero in his classic 1969 paper [3], while the second case was discussed in [2]. As is well known, in these two cases, not only is the spectrum analytically solvable but there are also huge degeneracies in both the cases. One can of course also add a term $g^{\prime} /\left(\sum_{j>k}\left(x_{j}-x_{k}\right)^{2}\right)$ in both the cases and the problem is still analytically solvable but the degeneracy gets lifted.

I might also add here that even in the case of $N$-anyons (in two dimensions), a class of exact solutions can only be obtained for all partial waves if the $N$-anyons are interacting either by the two-body harmonic interaction or by the $N$-body interaction [4] of the type given in [2]. This is also the case for $N$-body problems in arbitrary number of dimensions [5] as can easily be seen by going over to hyperspherical coordinates.

In conclusion, apart from the classic Calogero problem [3], the $N$-body potential as discussed in [2] is the only other example for which the $N$-body problem as given by

[^0]equation (1) of [1] can be solved analytically for all partial waves and in that sense the example discussed in [2] is indeed unique.

## References

[1] Calogero F 1996 J. Phys A: Math. Gen. 296455
[2] Khare A 1996 J. Phys A: Math. Gen. 29 L45
[3] Calogero F 1969 J. Math. Phys. 102191
[4] Khare A 1995 Bhubaneswar preprint IP-BBSR/95-111, hep-th/9512186
[5] Khare A unpublished


[^0]:    $\dagger$ E-mail address: khare@iopb.ernet.in
    $\ddagger$ This fact was also pointed out to me recently by N Gurappa, C N Kumar and P K Panigrahi of the University of Hyderabad, India.

